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ABSTRACT: A facile spray pyrolysis method is introduced to
construct the hollow CeO2-Al2O3 spheres with atomically
dispersed Fe. Only nitrates and ethanol were involved during the
one-step preparation process using the ultrasound spray pyrolysis
approach. Detailed explorations demonstrated that differences in
the pyrolysis temperature of the precursors and heat transfer are
crucial to the formation of the hollow nanostructure. In addition,
iron species were in situ atomically dispersed on the as-formed
CeO2-Al2O3 hollow spheres via this strategy, which demonstrated
promising potential in transferring syn-gas to valuable gasoline
products.

■ INTRODUCTION
Metal oxides with hollow nanostructure have received
increasing attention due to their promising potential in various
fields, including catalysis, energy storage, drug delivery, and
sensor.1−6 The traditional approaches to fabricate hollow
structures usually comprise hard template way or soft
template.3,7,8 However, the derived pollution and complexity
during preparation procedures strongly inhibit the wider
application of template routes. Other assembly strategies,
including Kirkendall process,9 Oswald ripening process,10

decomposition of metal−organic frameworks,11 and coordina-
tion polymers,12 have been successfully applied in producing
hollow nanostructure. Nevertheless, most of them are still
obstructed by their sophisticated synthetic procedure. There-
fore, the formation of a hollow structure via a facile strategy is
desirable.
Among various oxides, cerium dioxide (CeO2) has long been

significantly attractive in catalytic application13−20 because of
its environmental friendliness, spontaneous Ce3+/Ce4+, and
superior surface property.13,21,22 A fine synergistic effect can be
potentially identified during the catalysis process in the form of
ceria-based composites when ceria is combined with metals or
metal oxides.23 Therefore, M/CeO2 were widely used as
catalysts for numerous catalytic reactions, including reform-
ing,24 oxidation of volatile organic compounds (VOC),25

water−gas shift (WGS) reaction,23 CO (preferential)
oxidation,26 oxidative dehydrogenation,27 and so on. Nano-
sized CeO2 was frequently utilized in the catalysis process
owing to its abundant exposure to the surface, while the easy
aggregation severely hindered its efficiency. Thus, the
construction of a stable hollow structure with CeO2 nano-
particles would be greatly beneficial to optimize its capacity in

the catalytic application.24,28−31 However, the facile route for
the construction of the CeO2 hollow structure via template-
free method has been rarely developed so far.32

Herein, we reported a facile strategy to fabricate hollow
nanospheres comprising dominant CeO2 and minor Al2O3

phases with the aid of the spray pyrolysis technique.33−43 The
differentiated decomposition temperatures for cerium nitrate
and auxiliary precursor (aluminum nitrate) are vital in the
formation of hollow morphology. Through this approach,
atomically dispersed Fe atoms are in situ anchored in the
CeO2-Al2O3 hollow spheres in one step, which the atomic
dispersion metal sites have demonstrated widely potential in
catalytic applications.44−46 The as-prepared Fe single atoms in
the CeO2-Al2O3 hollow spheres (Fe-SA/CeO2-Al2O3) demon-
strated promising catalytic performance in the Fischer−
Tropsch reaction, which is the key technology to generate
fuels from syngas. The CO conversion at 330 °C is ∼50%
coupling with good stability during a long-term test. In
addition, the selectivity of 66% for the desired light olefins and
C5+. This work provided a general approach for synthesizing
CeO2-based hollow structures with highly dispersed metal
sites.
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■ EXPERIMENTAL SECTION
Catalyst Preparation. Materials. All chemicals were directly used

without further modifications. Cerium nitrate hexahydrate (Ce-
(NO3)3·6H2O), aluminum nitrate nonahydrate (Al(NO3)3·9H2O),
and sodium hydroxide (NaOH) were provided by Tianjin Kermal
Chemical Reagent Factory.
Preparation of CeO2-Al2O3 Hollow Spheres. The ultrasound spray

pyrolysis technique is used to synthesize the CeO2 dominant hollow
spheres. First, mixed Ce(NO3)3·6H2O and Al(NO3)3·9H2O (total
amount is 8 mmol and molar ratios of Ce/Al were changed with 100/
0, 50/50, 70/30, and 0/100) were added into 80 mL ethanol. After
stirring for 10 min, the transparent solution was subsequently
transferred to the ultrasonic humidifier, which would generate
microspheres via the aerosol-spraying progress. After that, the
atomized spray flowed inside a 90 cm long glass tube by pure N2
flow (150 mL·min−1), which was preheated by a tube furnace at 450
°C. Finally, the as-prepared powder samples were further dried in an
oven at 80 °C overnight.
Preparation of Fe-SA/CeO2-Al2O3 Hollow Spheres. Similarly, Fe-

SA/CeO2-Al2O3 was prepared with the same method mentioned
above, where the ratio of Fe/Ce/Al was changed to 10/70/30.
Additional alkali etching (1 M NaOH solution) treatment was taken
on the collected sample for 24 h.
Characterizations. Ex situ X-ray diffraction (XRD) test was

conducted on a powder diffractometer (PANalytical B.V. X′pert3, 40
kV, 40 mA), coupled with Cu Kα1 radiation (α = 0.15406 nm).
The transmission electron microscopy (TEM) test was conducted

on an FEI Tecnai F20 instrument (200 kV). A JEOL ARM200F
microscope, coupled with a probe-forming spherical-aberration
corrector and Gatan image filter (Quantum 965), was used to record
the aberration-corrected high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) images. The
electron energy-loss spectroscopy (EELS) was also recorded on the
same equipment, which provided the elemental mapping results from
the Fe-L2,3, Ce-M4,5, and O-K edges.
X-ray photoelectron spectroscopy (XPS) analysis was conducted

on an Axis Ultra XPS spectrometer (Kratos, U.K.) using 225 W Al Kα
radiation. The binding energies were corrected via calibrating the C 1s
peak at 284.8 eV.
The ex situ X-ray absorption fine structure (XAFS) spectra of Fe K-

edge (E0 = 7112 eV) for both fresh and spent iron−ceria catalysts

were recorded at BL14W1 beamline of Shanghai Synchrotron
Radiation Facility. Two operation modes were used, with one under
the “top-up” mode at 3.5 GeV coupled with a 220 mA constant
current and the other one operated at 20-ID-B beamline of Advanced
Photon Source (APS) of Argonne National Laboratory (ANL), which
was operated under a top-up mode at 7.0 GeV (constant current: 100
mA). A Lytle ion chamber or a four-channel Vortex silicon drift
detector recorded the XAFS data under fluorescence mode. The pure
Fe foil was used to calibrate the data. Also, the as-collected data was
extracted and fitted by Athena and Artemis codes. For the X-ray
absorption near-edge structure (XANES) profile, to normalize the
absorption energy, the coefficients of experimental absorption as a
function for energies μ(E) were processed by background subtraction
and normalization steps. For the extended X-ray absorption fine
structure (EXAFS) profile, the Fourier transform (FT) data in R
space proceeded with the use of the first-shell approximation or
metallic Fe model for the Fe−O/Fe−O−Fe/Fe−O−Ce or Fe−Fe
coordination. The passive electron factors (S0

2) were determined by
fitting the experimental Fe foil data and fixing the Fe−Fe coordination
number (CN) to 8 + 6 and subsequently fixing for the following
analysis of the measured samples. The other parameters that allowed
us to change during the fit process comprise the parameters related to
the electronic properties (E0) and the values of the local structure
environment including CN, bond distance (R), and Debye−Waller
(D.W.) factor around the absorbing atoms.

Catalytic Measurements. The Fischer−Tropsch synthesis (FTS)
reaction was conducted on a fixed-bed flow reactor with a gas mixture
of 47% CO, 47% H2, and 6%N2. Catalyst powders (0.08 g) were
diluted with 0.5 g of SiO2 particles (20−40 mesh) before the test. The
FTS measurements at 330 °C were carried out under high pressure of
2 MPa with a pretreatment at 380 °C for 3 h in 10%H2/Ar. The gas
hourly space velocity (GHSV) of the reaction was set at 13 500 cm3·
h−1·gcat

−1. The product and reactant in the gas phase were detected
online using a gas chromatograph (GC-9160, Shanghai, China). The
C1−C4 ranged hydrocarbons were analyzed using a Plot Al2O3
capillary column with a flame ionization detector (FID); however,
CO, CO2, CH4, and N2 were analyzed using a Porapak Q and 5A
molecular sieve-packed column with a thermal conductivity detector
(TCD). All hydrocarbons were analyzed using GC-9160 with a
PONA capillary column and a flame ionization detector (FID). To
calculate the CO conversion, 6%N2 in syngas was used as an internal

Figure 1. TEM images of the CeO2-Al2O3 spheres with various Ce/Al ratios, (a) 100%Al, (b) 100%Ce, and (c) 70%Ce/30%Al. Scale bar: 200 nm.
Plausible schematic illustration of the formation process for (d) 100%Al, (e) 100%Ce, and (f) 70%Ce/30%Al.
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standard. The selectivity of the products was all based on carbon. The
selectivity of CO2, CH4, C2−C4, and C5+ is calculated on the basis of
all used CO molecules. The catalytic activity (Fe time yield, FTY) is
defined as the amount of converted CO moles per gram of Fe per
second.

■ RESULTS AND DISCUSSION

The oxides powders were continuously produced using the
spray pyrolysis equipment. The morphology of the as-prepared
nanospheres is strongly affected by the ratio of precursors.
When only independent Ce(NO3)3 or Al(NO3)3 was used as a
feedstock, solid nanospheres with a diameter of 100−500 nm
could be observed in the TEM images (Figure 1a,b). In
contrast, the hollow inner was clearly identified as the Ce/Al
ratio changed to 50:50 (Figure S1), whereas the spherical
shape was irregular. After optimizing the ratio as 70:30, which
is the ratio of the spheres with a hollow structure was above
90%, a smooth and integrated outline was fabricated as shown
in Figure 1c (Figure S2). Considering that the co-presence of
both Ce(NO3)3 and Al(NO3)3 was indispensable for
constructing a hollow inner, the difference in the decom-
position temperature (Td) of the two precursors is envisioned
as a plausible induction for the hollow structure. In detail, ΔTd
of Ce(NO3)3 and Al(NO3)3 is as high as ∼130 K with the
separated Td values of 570 and 440 K, respectively.47 The
correlation between ΔTd and the formation of hollow inner
was further evidenced by the solid feature for the combinations
of Ce(NO3)3 and Co(NO3)2 or Cu(NO3)2 (Figure S3), whose
ΔTd values were only ∼17 and ∼7 K, respectively (Table S1).
A similar phenomenon was also got in the formation of the
Co3O4-Al2O3 hollow nanostructure over the combination of
Co(NO3)2 and Al(NO3)3, coupling with a ΔTd value of ∼100
K.
During the ultrasound atomization process, the mixture in

ethanol solution was atomized to a lot of small droplets, where
drastic gas−liquid reaction is conducting. Therefore, consid-
ering the strong correlation between heating transfer, ΔTd, and
the formation of a hollow structure, we proposed a plausible
formation mechanism of the CeO2-Al2O3 spheres as follows.
As shown in Figure 1d,e, the independent Ce(NO3)3 or
Al(NO3)3 precursor decomposed at different stages after
atomizing into the tube with the aid of N2 flow, the Al(NO3)3
pyrolyzed at an earlier time of t1, and Ce(NO3)3 decomposed
at a subsequent time of t2. The interval between t1 and t2
provided the condition for the formation of an outer surface
layer of Al2O3 with the rapid evaporation of ethanol at first.
Then, the decomposed NxOy from Ce(NO3)3 created a
relatively high inner gas pressure, which promoted the
substance inside to spread to the outer layer (Figure 1f). In
addition, the working temperatures demonstrated a consid-
erable effect on the formation of a hollow structure, where the
relatively higher temperature (450 °C) was favorable for the
fabrication of smaller sizes (Figure S4). In addition, a gradual
evolution from hollow to yolk-shell structure was found to
increase the amount of surfactant incorporated in the solvent
(Figure 2). Considering the change in the thermal conductivity
for the precursor solvent, the evolution of the inner structure
implied the possible role of heating transfer in constructing a
hollow structure. Furthermore, it provides a facile strategy to
modulate the morphology of nanospheres.
The powder X-ray diffraction (XRD) demonstrated only the

face-centered cubic (fcc) structure of CeO2 without any phase
of Al2O3 for the as-prepared CeO2-Al2O3 spheres (Figure S5a).

Compared with pure CeO2, no detectable shift could be
observed for diffraction peak, indicating the absence of lattice
contraction induced by the doping of Al atoms (Figure S5b).
As shown in the scanning electron microscopy (SEM) images
(Figure S6), the hollow morphology of the CeO2-Al2O3
spheres was also identified through the broken holes on the
surface. In addition, the porous property of the hollow spheres
was confirmed by the Brunauer−Emmett−Teller (BET)
measurement (Figure S7). Therefore, the hollow sphere
comprising abundant small CeO2 nanoparticles and amor-
phous Al2O3 was fabricated via a template-free approach.
Furthermore, through in situ mixings, various kinds of metals,
such as Fe, Co, Ni, Ru, Pd, etc., can be well dispersed over this
CeO2 dominant hollow sphere, which would be beneficial for
wide catalytic applications.
In this work, Fe was in situ fixed on the CeO2-Al2O3 hollow

spheres with the same approach. X-ray photoelectron spec-
troscopy (XPS) was used to measure the elemental
composition of the CeO2-Al2O3 composites. The Fe/Ce/Al
ratio of the surface layer (∼5 nm) for the composites without
any treatment determined by XPS is 10/58/32 (Figure S8).
Additional etching treatment by NaOH solution was
conducted over Fe-SA/CeO2-Al2O3 for better exposure of
metal sites, in which the estimated atomic ratio of Fe/Ce/Al is
changed from 10/58/32 to 15/70/15 based on XPS results
(Figure S9). Correspondingly, the mass ratio (wt %) of the
components (Fe2O3/CeO2/Al2O3) was changed from 5.9/
80.5/13.6% to 6.4/87.4/6.2%, confirming the dramatic
decrease in the Al content. Compared with CeO2-Al2O3
hollow spheres, the morphology remained nearly unchanged
after introducing Fe atoms as revealed in the TEM images
(Figure 3a,b). The atomic-resolution HAADF-STEM image
shown in Figure 3c exhibited that the ceria was highly
crystallized with clear lattice fringes. With the aid of STEM-
EELS, the presence of Fe, Ce, and O elements was observed
with a uniform dispersion over the field of view (Figure 3d).

Figure 2. TEM images of CeO2-Al2O3 (Ce/Al = 70:30) hollow
spheres with different contents of F127 during the synthesis process:
(a) 0 F127, (b) 0.05 F127, (c) 0.4 F127, and (d) 0.8 F127.
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To further identify the specific structure around the
measured Fe atoms, the XAFS technique was used to
investigate the iron−ceria samples, which were elementally
sensitive to determine both electronic and local structures.48

As shown in XANES results (Figure 4a), the Fe K-edge

spectrum for fresh Fe-SA/CeO2-Al2O3 is between Fe2O3 and
Fe3O4, indicating that the oxidation state of Fe atoms is
between Fe2O3 and Fe3O4. The accurate coordination
information of the Fe atom was analyzed by EXAFS (Figure
4b). Only primary Fe−O contribution in R space at 1.96 Å was
clearly identified, without the observation of Fe−Fe shell (R =
2.46 Å) in the first shell or the Fe−O−Fe shell in the second
shell (R = 3.32 Å), proving the atomic dispersion with only
Fe−O coordination for the Fe atoms on the CeO2-Al2O3
hollow spheres. Based on the fitting result (Figure S10), the

coordination number (CN) of Fe−O in the first shell was 4.3
± 0.9.
To preliminarily value the potential of the as-prepared

hollow composites in catalytic applications, we evaluated it as a
catalyst for the Fischer−Tropsch synthesis (FTS) reaction,
which is one of the key technologies to convert syn-gas to
environmental fuel and the conventional reaction condition is
tough.37,49 Figure 5a illustrates the catalytic steady test over the
as-prepared Fe-SA/CeO2-Al2O3 at 330 °C for 40 h, as well as
the reference catalysts Fe/Al2O3 and Fe/CeO2 with solid
feature. A gradual increase in CO conversion was observed in
the initial 15 h for the Fe-SA/CeO2-Al2O3 catalyst, indicative
of a potential activation process induced in the initial stage,
which might be ascribed to the phase transformation from
oxides to carbides.49,50 Subsequently, the CO conversion
reached a plateau with a constant conversion of ca. 50%,
implying relatively good stability under tough reaction
conditions. The CO conversion of Fe-SA/CeO2-Al2O3 catalyst
obviously surpassed that of Fe/CeO2 and Fe/Al2O3 (53 vs 5%
or 10%), where the mass loading of Fe is comparable for these
catalysts (4.5 wt % vs 4.6 or 5.1%). The superior catalytic
performance of Fe-SA/CeO2-Al2O3 spheres might indicate the
strength of its hollow structure. The CO conversation rate
normalized by Fe mass (Fe-time yield, FTY) is 827 μmol·g−1·
s−1 at 330 °C, which is a moderately good catalytic
performance (Table S3).51−53 The selectivity for the desired
light olefins (C2=−C4=) and C5+ hydrocarbons were 27.0 and
38.7%, respectively (Figure 5b; 65.7% in total, selectivity
calculated basing on all hydrocarbons).
In addition, the chain-growth probability (α) obtained from

the Anderson−Schulz−Flory (ASF) model for Fe-SA/CeO2-
Al2O3 was 0.51 (Figure S11). As shown in Figure S12a, a small
number of spheres were broken after the FTS reaction and the
predominant spheres are integrate. The only detectable
crystalline phase after the reaction is CeO2 (Figure S12b),
which is the same as that of the fresh one. To further confirm
the potential correlation between the catalytic performance
and structural features, the spent Fe-SA/CeO2-Al2O3 catalyst
after the reaction at 330 °C was analyzed by XAFS. As shown
in Figure 6a, the oxidation state of Fe atoms was close to Fe3O4
based on the XANES results, which became slightly reduced as
compared with the samples before reaction. Considering the
gradual activation process during the FTS reaction, these
reduced Fe atoms might be the active sites. The presence of
atomically dispersed Fe sites was confirmed by the isolated
presence of Fe−O coordination in the first shell as shown in
EXAFS results (R = 1.95 ± 0.02 Å, CN = 4.0 ± 0.8; Figure
6b), demonstrating their good stability on the surface of
hollow CeO2 sphere, which should be the origin of the
satisfactory catalytic stability under FTS reaction condition.

■ CONCLUSIONS
In summary, we have developed a facile strategy for the
fabrication of a CeO2-Al2O3 hollow sphere by the spray
pyrolysis technique. Comprehensive characterizations showed
that the difference in the decomposition temperatures of two
precursors and the heating transfer played crucial roles in the
formation of hollow morphology. With the aid of this method,
the Fe element could be simply and atomically dispersed over
the CeO2 hollow spheres synchronously during the synthesis
process. The as-prepared Fe-SA/CeO2-Al2O3 hollow sphere
revealed the CO conversion rate of 827 μmol·g−1·s−1 at 330 °C
couplings with a selectivity of 67% for the desired light olefins

Figure 3. (a) Overview TEM image, (b) HAADF-STEM image, (c)
atomic-resolution HAADF image, and (d) STEM-EELS mapping
results of the as-prepared Fe-SA/CeO2-Al2O3 hollow sphere.

Figure 4. (a) XANES spectra, where the insert is the magnified
spectra and (b) Fourier transform (FT) of the Fe K-edge EXAFS
spectra of Fe-SA/CeO2-Al2O3 hollow sphere.
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and C5+. This work provided a facile and general route for
synthesizing hollow CeO2 structures with highly dispersed
metal sites.
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